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A small-area analysis (SAA) in health services research often calculates surgery
ratesfor several small areas, compares the largest rate to the smallest, notes that the
difference is large, and attempts to explain this discrepancy as afunction of service
availability, physician practice styles, or otherfactors. SAAs are often difficult to
interpret because there is littk theoretical basisfor determining how much variation
would be expected under the null hypothesis that all of the small areas have similar
underlying surgery rates and that the observed variation is due to chance. We
developed a computer program to simulate the distribution ofseveral commonly used
descriptive statistics under the null hypothesis, and used it to examine the variabil-
ity in rates among the counties of the state of Washington. The expected variability
when the null hypothesis is true is surprisingly large, and becomes worse for
procedures with low incidence, for smaller populations, when there is variability
among the populations of the counties, and when readmissions are possibk. The
characteristics offour descriptive statistics were studied and compared. None was
uniformly good, but the chi-square statistic had better performance than the others.
When we reanalyzedfivejournal articles that presented sufficient data, the results
were usually statistically significant. Since SAA research today is tending to deal
with low-incidence events, smaller populations, and measures where readmissions
are possible, more research is needed on the distribution of small-area statistics
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under the null hypothesis. New standards are proposedfor the presentation ofSAA
results.

Small-area analysis (SAA) is a popular methodology in health services
research. A typical SAA might calculate the utilization rate for a service
(we will refer to this as a type of surgery) in several small areas (we will
call them counties), compare the largest rate to the smallest, note that
the difference is large, and attempt (using multiple regression or t-tests)
to explain the variability in surgery rates as a function of service avail-
ability, physician practice styles, and other variables of interest. Such
analyses have generated many hypotheses for further exploration. A
large number of SAA studies have been performed, and several review
artides have been written on this topic (Copenhagen Collaborating Cen-
ter 1985; Paul-Shaheen, Clark, and Williams 1987; Health Affairs 1984).

The underlying hypothesis that there is "too much" variability
among the counties is rarely tested formally in such research, partly
because the reported variation appears large, and partly because there
are no good ways to test it. The null hypothesis in this case is that the
underlying surgery rate is the same in all the counties, and that the
observed differences among the counties are due simply to random
variation. Information is needed about the distribution of rates in this
null situation to help investigators decide whether the observed varia-
bility is larger than would have been expected by chance alone.

Few statistical methods exist that allow us to assess such variabil-
ity. Some tables are available on the order statistics of the standard
normal distribution (Dixon and Massey 1957; Sarhan and Greenberg
1962). These give the mean and standard deviation of, for example,
the highest observation of a set of five drawn from the standard normal
distribution. (Students are often surprised to learn that the expected
value of the maximum is not zero.) Based on these tables, the highest
and lowest observations will differ, on average, by 2.3 standard devia-
tions if five observations are drawn, and by 3.7 standard deviations if
20 observations are drawn. The difference increases with the number
of observations being ordered.

In theory, if the populations are large enough, we can assume that
the observed rate in each small area has a normal distribution, with a
common mean and standard deviation, and the order statistic tables
can be used. In practice, however, the order statistics are not very
useful for several reasons. First, they are tabled only up to N = 20.
Second, they require that each observation be drawn from the same
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distribution. If p is the underlying probability of surgery in a county
with ni people, the variance of that rate will be p(1 - p)/ni. The variance
can only be the same for all counties if they have (approximately) the
same populations. This is often not the case. Finally, a statistic that is
often used in SAA is the extremal quotient (EQ), the maximum rate
divided by the minimum rate. The distribution for this statistic has not
been tabled (primarily because its expected value is infinity), although
tables that deal with some cases of interest- large, similar-sized
counties - recently appeared in this journal (Kazandjian, Durance,
and Schork 1989). There are also no tables available for two other SAA
statistics, the coefficient of variation and the systematic component of
variation. Without such tables, these descriptive statistics cannot be
used to test the null hypothesis.

A statistical method that is sometimes appropriate is the 2 x k
chi-square test (for k counties), which tests the null hypothesis that the
surgery rate is the same in each county (Chassin, Brook, Park, et al.
1986). This is appropriate when a person can be counted in the numer-
ator at most once and when the expected number of surgeries per
county is at least five. (It is not. appropriate when readmissions are
possible, or for surgeries with low incidence.) This technique may be
underused because it does not apply directly to age/sex-standardized
rates, or because it does not provide direct estimates of the expected
variability among counties. Other hypothesis-testing methods that are
appropriate in some situations include analysis of variance and multi-
ple regression; these are described in the discussion section.

SAA is a well-accepted methodology, which is being embraced by
the health services research community and used in ways not foreseen by
its formulators. While early small-area analysts used relatively "large"
small areas, in which it could be assumed that detected variations were
meaningful, the popularity of the technique and the availability of
related software have encouraged investigators to apply this technique to
extremely small areas. The early research was on procedures such as
"ectomies," or organ removal, where a person can be in the numerator at
most once. This means that the surgery rate is a proportion, which has
known statistical properties. Mortality rates can also be thought of as
proportions. Current researchers, however, are extending the SAA
method to procedures where readmissions are possible (i.e., the same
person can be counted more than once in the numerator). Rates based
on these variables are not proportions, and do not have known theoreti-
cal distributions. Researchers are also interested in the variation of other
nonbinary measures such as length of stay, cost of an admission, disease
prevalence, or average number of fillings. The definition of a "small
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area" may now be a hospital or a dental practice as well as the more
traditional geographical or medical service area.

Because of the popularity of SAA, and the potential for new uses
of this technique, we believe that it is time for a technology assessment
of SAA. While many issues need to be assessed (Diehr 1984), we will
limit the scope of this research to the problem of determining when the
observed variability among small areas is statistically significant
(greater than expected under the null hypothesis), and to issues related
to this question. This is, of course, the first step that must be taken in a
small-area analysis.

METHODS

We wrote a computer program to simulate the type of surgery rates that
would be observed when a given number of counties of varying sizes all
have the same underlying surgery rate. The simulation program is
described schematically here, with more detail in Appendix A. Let the
underlying proportion of individuals who had surgery be p for each of k
counties. (In the following, k = 39.) In any particular year, the
observed proportion of people in a county who undergo surgery will
vary and these proportions will tend to be normally distributed, with
mean p and variance p(1 - p)/ni, where ni is the population of county i.
(We are assuming homogeneous populations; see the section on age and
sex adjustment further on.) Given p and ni, we can calculate the mean
and variance of the rate for each county. A flowchart for the simulation
is shown in Figure 1. To simulate a set of surgery rates, we generate a
random number from the appropriate normal distribution for each
county (normal with mean p, variance p(1 - p)/n,), resulting in 39 "sur-
gery rates" that might have been observed in a particular year by an
investigator. Although all of these rates were drawn from distributions
with the same mean, the observed rates will not be the same for every
county. They will vary, and the amount of variation will be larger for
smaller values of ni. We calculated the maximum and minimum of the
39 numbers, as well as the extremal quotient (maximum/minimum, or
set to "missing" if the minimum = 0); a chi-square statistic for the 2 x k
table (surgery yes/no, by county); the coefficient of variation (CV),
defined below; and the systematic component of variation (SCV), also
defined below.

This process was repeated 3,000 times, yielding 3,000 different
simulated samples from the underlying distribution, and 3,000 differ-
ent values of the maximum rate, minimum rate, maximum/minimum
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Figure 1: Schematic Diagram of Simulation
Read in number of counties (39), county sizes ni, p

Calculate standard deviation for each county, si = (p(l - pyni).5
For each trial (t = 1 to 3000)

For each county (i = 1 to 39)
Generate random number from normal distribution;

Yi has mean 0, variance 1
Compute XI = Yi *si + p

Compute A, = maximum of the 39 Xs
Compute B, = minimum of the 39 Xs
Compute C1 = EQ= At lB1 and other statistics

Calculate mean and standard deviation of 3000 values of A, B, and C, etc.

Print line on simulation table.

= extremal quotient (EQ), and the other statistics. We calculated the
mean and variance of the minimum, the maximum, and the EQ from
those 3,000 values, as well as the 95th percentile of the EQ chi-square,
CV, and SCV. This entire process was repeated for a range of values of
p. We varied the population sizes by various factors to simulate the
effect of studying, say, only females or the elderly. We also allowed the
possibility of readmissions (a person appearing in the numerator of the
surgery rate more than once) as explained in Appendix A. Finally we
looked at the effect of studying more or fewer counties.

As an example we took the 39 counties of the state of Washington.
The population of these counties varies from about 2,600 to 1.3 mil-
lion, clearly violating any assumption of equal population size. The
mean population per county is 114,000. Eight counties have fewer than
10,000 residents, 22 have from 10,000 to 100,000, eight have from
100,000 to 500,000 and the largest (which contains Seattle) has a popu-
lation of 1.3 million. Surgery rates computed in the large counties will
be relatively stable, but those in the smallest will tend to be quite
variable from year to year, since the addition of one or two additional
surgeries in such counties will increase the rates dramatically. The
county populations are shown in Appendix B.

RESULTS

Some simulation results are shown in Tables 1-8. Each line on Tables
1-4 is the result of 3,000 iterations. Tables 5-8 used 1,000 iterations.
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EXTREMAL QUOTIENT (EQ)

The EQ is the ratio of the highest observed rate to the lowest rate. It is
infinite if the lowest rate is zero, which can happen with high probabil-
ity if some of the counties are small and the surgery rates are low. In
our simulation we have dealt with this problem by excluding those
simulations in which EQ is infinite. Table 1 shows the mean and
standard deviation of the components of the EQ for various surgery
rates, assuming that all people in the state of Washington are eligible
for the surgery. Since the distribution of the extremal quotient has a
very long right tail, we also estimated the 95th percentile of its distribu-
tion. We first looked at the hypothetical condition in which each of the
39 counties had the same population, 114,000. This provides a "best
case" condition for comparison, and is similar to a situation for which
tables are available (Kazandjian, Durance, and Schork 1989).

The first line of Table 1 shows simulation results for an underlying
rate of 50 surgeries per 100,000 (p = .0005). Although the underlying
rate is 50, the average value of the smallest rate was 35.67, and of the
largest it was 64.21. Note that the distributions of the minimum and
maximum value have means that are symmetric about 50, and that the
standard deviations of the two measures are approximately equal. The
average value of the extremal quotient is 1.82, with a standard devia-
tion of 0.20. The 95th percentile of the EQ is 2.19, which is about two
standard deviations above the mean. The mean and standard deviation
of the minimum and maximum observations increase with the surgery
rate. The mean and standard deviation of the extremal quotient
decrease as the rate increases, as does the 95th percentile.

An investigator who had data in which the observed average sur-

Table 1: Simulation of Minimum, Maximum, and Extremal
Quotient (EQ) with all 39 County Populations Set to 114,000
(100 Percent of Population, No Readmissions)

Minimum Maximum EQ*
Rate per IOOK Mean S.D. Mean S.D. Mean S.D. 95%

50 35.67 3.26 64.21 3.16 1.82 0.20 2.19
100 79.76 4.53 120.04 4.50 1.51 0.10 1.71
250 218.47 7.04 281.58 7.25 1.29 0.05 1.38
500 455.20 9.81 545.05 10.08 1.20 0.03 1.26
1000 937.11 14.17 1062.70 13.75 1.13 0.02 1.17
2500 2400.32 21.94 2599.32 22.29 1.08 0.01 1.11
5000 4861.78 30.94 5138.37 30.70 1.06 0.01 1.07
10000 9808.92 42.49 10190.72 42.73 1.04 0.01 1.05
*EQ is not computed when the minimum is zero.
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gery rate was 50 per 100,000 might compare the observed extremal
quotient to the data in Table 1. Under the null hypothesis, the 95th
percentile of the EQ is 2.19. An observed extremal quotient larger than
2.19 thus indicates more variability than expected by chance alone. We
could reject the null hypothesis, and further analysis would be in order.
An observed EQ of, say, 1.5, would not be statistically significant, and
the SAA might stop at this point. An EQof 2 or more would be statisti-
cally significant for any surgery rate in Table 1. In general, EQs that
"look" large are significant for the experimental conditions of Table 1.

When the lowest observed rate is zero, the EQ is infinite. The
tabled values of EQ are only for noninfinite values. When the lowest
observed rate is zero, the investigator might instead compare the
observed maximum to the expected maximum value of Table 1. A
maximum value 1.645 standard deviations above its expected mean
(above 64.21 + 1.645(3.16) = 69.41) would also suggest more varia-
bility than expected by chance alone. Other test statistics-for
instance, (maximum-minimum)/median-could also be considered.
At this time, the relative power of various possible tests for "too much"
variability has not been studied.

Table 2 shows results from a simulation in which the actual popu-
lation of each county was used. These varied from 2,618 to 1.3 million,
as shown in Appendix B. The results for an incidence rate of 50 (first
line of Table 2) are strikingly different from those of Table 1. The
expected minimum value is 9.09, and the expected maximum value is
94.23, even though all counties have the same expected rate of 50. The
expected value of the EQ is 6.23, with a standard deviation of 8.62,

Table 2: Simulation of Minimum, Maximum, and Extremal
Quotient (EQ) Using 39 Actual County Populations (100
Percent of Population, No Readmissions)

Minimum Maximum EQ*
Rate per lOOK Mean S.D. Mean S.D. Mean S.D. 95%

50 9.09 10.61 94.23 20.64 6.23t 8.62 11.25
100 38.25 20.70 160.72 27.28 5.62 27.56 8.60
250 147.01 42.12 343.07 37.78 2.92 6.05 4.99
500 351.24 61.85 630.79 53.60 1.88 0.76 2.70
1000 794.74 86.00 1182.87 75.67 1.51 0.22 1.90
2500 2177.26 137.01 2793.43 122.29 1.29 0.10 1.48
5000 4547.87 188.96 5404.54 163.45 1.19 0.06 1.31
10000 9375.43 272.75 10552.85 225.56 1.13 0.04 1.20
* EQ is not computed when the minimum is zero.

t The EQ was infinite (lowest rate was 0) more than half the time.
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and a 95th percentile of 11.25. The investigator would have to see 11-
fold differences before statistical significance could be claimed! The
values in Table 2 are closer to those in Table 1 for higher surgery rates,
but still differ substantially. These results show that the amount of
variability among counties can be very high, even when there is no
underlying difference in surgery rate among the counties. The 95th
percentile of the EQ is lower than the mean plus 1.645 standard devia-
tions because EQ has a long right-tailed distribution. Because of this,
we will discuss only the 95th percentile of the EQ as a critical value.
The estimated mean and standard deviation of the EQ are presented
only for reference.

Table 3 shows results if the population for each county is divided
by 2, which would occur if, for example, only males were being stud-
ied. The expected values, standard deviations, and percentiles are even
higher in this table than in Table 2. Thus, the EQ is sensitive to the
number of people in each county, as well as to the distribution of
people among counties.

One assumption underlying the simulation model is that a person
can be in the numerator once at the most. This is probably true for
"ectomies, since an organ can be removed at most once (although a
person might still be in the data base more than once if that person was
readmitted for complications, or if multiple bills were submitted for the
same procedure). This assumption is violated, however, when hospital
admission rates for a particular diagnosis are analyzed. Readmission
rates for many diagnoses run as high as 50 percent, and the average

Table 3: Simulation of Minimum, Maximum, and Extremal
Quotient (EQ) Using 39 Actual County Populations (50
Percent of Population, No Readmissions)

Minimum Maximum EQ*
Rate per IOOK Mean S.D. Mean S.D. Mean S.D. 95%

50 1.51 5.25 115.28 32.03 1 1 1
100 17.61 21.18 189.31 42.72 6.63t 11.83 12.05
250 108.62 49.52 381.12 55.33 4.33 7.30 7.88
500 295.51 83.08 685.00 73.78 3.28 16.33 4.93
1000 708.90 121.01 1262.56 104.01 1.86 0.72 2.66
2500 2048.12 191.00 2909.89 169.42 1.43 0.17 1.76
5000 4359.60 272.03 5571.86 241.20 1.28 0.10 1.47
10000 9131.65 368.35 10787.55 324.50 1.18 0.06 1.30
* EQ is not computed when the minimum is zero.
t The EQ was infinite (lowest rate was 0) more than half the time.
The EQ was infinite more than 90 percent of the time, and is too unstable to present.
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number of admissions of all types per person hospitalized is 1.5 in a
year (U.S. Dept. of Health and Human Services 1983). To examine
the effect of readmissions on SAA statistics, we made a simple assump-
tion (for this example) that the probability of a second admission (con-
ditional on the first admission) is .5, but the probability of a third
admission is 0, adjusted to make the overall admission rate the same as
in previous examples. (Details are in Appendix A.) The results of a
simulation that includes readmissions are in Table 4. The variability in
all the statistics is much higher here than in Table 2, where the
observed surgery rates are the same but there are no readmissions. The
95th percentiles are as high as 28. Thus, readmissions can have a large
effect on the variability of small-area statistics under the null hypoth-
esis.

From this point on we use a different format for the simulation
results, presenting only the estimated 95th percentiles of the descriptive
statistics, based on 1,000 iterations. The first four columns of Table 5
contain the 95th percentiles of the EQ in the experimental conditions
used for Tables 1-4. The tabled results differ slightly because a differ-
ent number of iterations was used. The simulation results are accurate
to about two or three significant digits.

Column 4 shows the results when 50 percent of those admitted
were readmitted once. We next consider a situation in which only 10
percent were readmitted. This is shown in the fifth column of Table 5.
The rates are not as high as those of Table 4, but are still substantially

Table 4: Simulation of Minimum, Maximum, and Extremal
Quotient (EQ) Using 39 Actual County Populations (100
Percent of Population, 50 Percent Readmission Rate)

Minimum Maximum EQ*
Rate per IOOK Mean S.D. Mean S.D. Mean S.D. 95%

50 2.86 6.62 109.42 29.89 t t t
100 24.21 21.33 179.55 36.92 9.97 60.85 16.90
250 121.05 47.92 369.59 48.08 4.28 12.24 8.94
500 308.17 80.00 668.33 68.16 2.81 12.02 4.33
1000 734.22 112.43 1239.34 99.63 1.74 0.44 2.39
2500 2080.89 177.98 2874.77 151.55 1.39 0.15 1.68
5000 4408.56 245.96 5527.65 211.07 1.26 0.09 1.42
10000 9174.33 342.53 10727.18 296.50 1.17 0.06 1.27
* EQ is not computed when the minimum is zero.

t The EQ was infinite (lowest rate was zero) more than 75 percent of the time, and is
too unstable to present.
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Table 5: 95th Percentile of Extremal Quotient* (EQ) in
Seven Experimental Situations for Eight Surgery Rates (Based
on 1,000 Iterations per Number)

1 2 3 4 5 6 7
Rate
per Same Real 50% 10% Large Same
IOOK Pop. Pop. Male Readmit. Readmit. Only K= 10

50
100
250
500
1000
2500
5000
10000

2.20
1.70
1.40
1.26
1.18
1.11
1.07
1.05

11.08t
8.85
4.65
2.62
1.95
1.47
1.30
1.20

11.42t
7.75
5.70
2.64
1.77
1.47
1.30

23.53
9.79
4.20
2.40
1.66
1.42
1.29

14.53T
11.74
6.08
3.04
2.09
1.52
1.34
1.22

6.80
3.14
1.99
1.57
1.37
1.22
1.14
1.-10

1.85
1.53
1.30
1.22
1.14
1.09
1.06
1.04

Column:
1-All 39 counties have same population, 114,000.
2-Actual county populations used (2,618 to 1,344,586).
3 -"Males Only" (50 percent of population used).
4-50 percent of people are readmitted once.
5-10 percent of people are readmitted once.
6-Counties with populations above 10,000 (31 counties).
7- Only ten counties, all with same population, 114,000.
* EQ is not computed when the minimum is zero.
t The EQ was infinite (lowest rate was zero) more than half the time.
$ The EQ was infinite more than 75 percent of the time, and is too unstable to present.

higher than those of column 2 (or of Table 2). Even a relatively low
readmission rate can cause serious distortions in the EQ distribution.

One way to deal with the excessive variability in the null situation
is to eliminate some of the smallest counties. This is unsatisfying, since
these might be the areas that had high underlying rates. However, it
may be necessary in order to make the problem tractable. (Counties
should be eliminated or combined based on their expected number of
surgeries, not on the observed numbers.) Column 6 of Table 5 shows
the results for Washington state if the eight counties with populations
below 10,000 are removed. The values in this table are smaller than
those of Table 2, although still considerably larger than those of Table
1. For example, the 95th percentile of the EQ for a rate of 50 is 11.08
for all 39 counties, but only 6.80 for the 31 largest counties. The value
in the "ideal" case of Table 1 is 2.20. The chance variability in the EQ
could be decreased still further by eliminating more counties, but this
would make the resulting findings less and less generalizable. It is also
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not necessarily true that tests using this smaller subset of counties
would have more power than tests using all counties.

Column 7 shows the effect of varying the number of counties. The
experimental condition is the same as that of column 1, but with only
10 counties instead of 39. Comparing column 1 with column 7 shows
that the EQis lower if there are fewer counties. (The fewer the observa-
tions, the less likely an extreme value.)

In summary, except for the situation represented in Table 1 (ecto-
mies, similar-sized large counties, high expected values), the EQ can
be very misleading, as apparently large values are not significantly
different from what would be expected by chance alone.

CHI-SQUARE

A simple way to test for differences in the surgery rate among k coun-
ties is to separate the people in each county into two groups (surgery,
no surgery), construct a 2 x k contingency table, and calculate the
usual chi-square statistic with k - 1 degrees of freedom. This is appro-
priate if there are no readmissions, if all people in a county have the
same probability of surgery, and if the expected number of surgeries
per county is at least five. We calculated the chi-square statistic for
each of the seven experimental conditions that have been discussed for
the EQ. (Because we did not have to estimate the population propor-
tion since it was set by the simulation, our chi-square has k rather than
k - 1 degrees of freedom.) The estimated 95th percentiles of the chi-
square statistics computed are shown in Table 6. The tabled value of
the 95th percentile of a chi-square distribution with 39 degrees of
freedom is about 55 (54.6).

The values in column 1, the experimental condition where all
counties have the same large population, is close to 55 for every surgi-
cal rate. This is what would be expected, as the null hypothesis (no
variation in rates among the counties) is true. In column 2, where the
actual population sizes were used, the results are very similar. This is
gratifying, especially given the relatively small expected values in some
of the counties; the rate of 50 per 100,000 gives an expected value of
only 1.3 surgeries in the smallest county, which has a population of
2,618. Use of the Yates correction (Armitage 1973) would probably
allow even smaller expected values. Column 3 shows that the chi-
square statistic has approximately the correct value even when the
population size is reduced by 50 percent. Thus, in general, the chi-
square statistic will provide an appropriate test statistic for the first
three experimental conditions.
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Table 6: 95th Percentile of 2 x 39 Chi-Square Statistic* in
Seven Experimental Situations for Eight Surgery Rates (Based
on 1,000 Iterations per Number)

1 2 3 4 5 6 7
Rate
per Same Real 50% 10% Large Same
lOOK Pop. Pop. Mak Readmit. Readmit. Only K- 10

50 54.7 55.3 55.9 91.0 63.6 54.6 55.4
100 54.6 55.5 54.6 92.2 64.8 54.6 52.8
250 55.7 53.9 53.6 89.4 65.3 57.2 53.6
500 55.4 54.9 53.4 91.8 64.5 55.0 57.2
1000 54.0 55.1 56.4 92.0 64.8 53.5 52.4
2500 54.1 55.0 55.5 91.7 64.3 55.0 55.1
5000 53.4 53.7 55.2 91.9 64.1 55.0 56.6
10000 54.1 53.9 56.9 98.5 66.8 53.0 54.8

Column:
1-All 39 counties have same population, 114,000.
2 -Actual county populations used (2,618 to 1,344,586).
3 -"Males Only" (50 percent of population used).
4-50 percent of people are readmitted once.
5-10 percent of people are readmitted once.
6-Counties with populations above 10,000 (31 counties).
7-Only ten counties, all with same population, 114,000.
* 95th percentile of chi-square statistic with 39 degrees of freedom is 54.57; for column
6, 95th percentile is multiplied by 54.57/44.98 to adjust for difference in degrees of
freedom. For column 7, the factor is 54.57/18.31.

Column 4 shows the 95th percentile of the chi-square statistic
(under the null hypothesis) if there are 50 percent readmissions. Note
that these critical values are almost twice those ofcolumn 2. If one were
to perform a chi-square test using 55 as the critical value, one would
reject the null hypothesis much too often, since chi-square statistics on
the order of 90 are actually required for rejection. Thus, the chi-square
is not appropriate when there are many readmissions. Column 5 shows
the situation with only 10 percent readmissions; these percentiles are
also too large, by about 20 percent. Use of the chi-square test in this
situation, with a critical value of 55, would also lead to nonconservative
tests. A lower readmission rate is less serious than a higher rate, but it
is still a problem.

The sixth column shows that (if there are no readmissions) the chi-
square statistics are quite good for all rates if the smallest counties
(population below 10,000) are removed. (To make comparison easier
we multiplied the simulated 95th percentiles by 55/45, as the 95th
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percentile of a chi-square with 31 degrees of freedom is 45.) Column 7
shows that chi-square is as appropriate for 10 counties as for 39.

In summary, the chi-square method is a good way of testing for
variability if the probability of readmission is zero and the expected
number of cases per county is not too small, but it may be very mis-
leading if readmissions are possible.

COEFFICIENT OF VARIATION

The weighted coefficient of variation (CV) has been used as a descrip-
tive statistic for SAA (Chassin, Brook, Park, et al. 1986). The CV is
the ratio of the standard deviation of the rates (among counties) to the
mean rate (among counties) weighted by the population in each
county. No tables are available to allow us to judge what is "too large."
Table 7 shows the 95th percentile of the CV in the seven experimental
conditions. The CV behaves similarly to the EQ in that its 95th
percentile decreases with an increasing surgery rate and increases if the
number of people in the county is lower, and if there are readmissions.
Unlike the EQ the CV is slightly higher when the number of counties
is smaller (column 7 versus column 1). The CV is relatively insensitive

Table 7: 95th Percentile of Coefficient of Variation (CV) in
Seven Experimental Situations for Eight Surgery Rates (Based
on 1,000 Iterations per Number)

1 2 3 4 5 6 7
Rate
per Same Real 50% 10% Large Same
lOOK Pop. Pop. Male Readmit. Readmit. Only K= 10

50 .158 .158 .226 .206 .173 .143 .186
100 .111 .111 .159 .145 .121 .102 .129
250 .071 .070 .100 .090 .076 .064 .082
500 .050 .049 .070 .064 .054 .045 .057
1000 .035 .035 .049 .045 .038 .033 .039
2500 .022 .022 .031 .029 .024 .020 .025
5000 .015 .015 .021 .020 .017 .014 .018
10000 .010 .010 .015 .014 .012 .010 .012

Column:
1-All 39 counties have same population, 114,000.
2 -Actual county populations used (2,618 to 1,344,586).
3 -"Males Only" (50 percent of population used).
4-50 percent of people are readmitted once.
5-10 percent of people are readmitted once.
6-Counties with populations above 10,000 (31 counties).
7-Only ten counties, all with same population, 114,000.
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to variability in population sizes (column 1 versus column 2). The CV
is sometimes used to compare the variability in the rate of one surgical
procedure to that of another (Chassin, Brook, Park, et al. 1986). This
would not be an appropriate way to compare surgeries that are per-
formed at different rates, since the difference in the rate itself would
cause the less frequent surgery type to have a larger CV than the other.
There are no strong reasons to recommend the use of the CV.

SYSTEMATIC COMPONENT OF VARIATION (SCV)

McPherson, Wennberg, Hovind, et al. (1982) developed a descriptive
statistic that estimates the variance among counties that cannot be
accounted for by the variability within each county. This is called the
systematic component of variation (SCV), and large values are indica-
tive of true differences among the counties. As with the CV, there are
no tables for its distribution. The formula for the SCV (multiplied by
1,000) is

k k
SCV = (1/k)[ s ((O° - E,)/E,)2- (1/E,)]*1000 (1)

where Oi is the observed number of surgeries in county i and Ei is the
expected number if the null hypothesis is true. It is possible to have
negative SCV values, which is unsettling but acceptable in the null
case, since the true underlying variance is zero.

Table 8 shows that the SCV behaves similarly to the EQ and the
CV; that is, it is sensitive to the underlying rate, to the population
sizes, and to variability in the population sizes, and is very sensitive to
readmissions. As with the CV, it would not be appropriate to use the
SCV to compare the variability of two surgical procedures unless their
rates were very similar, since there is more variability for low rates
than for high rates. It would also be wrong to compare several geo-
graphic areas unless the number of counties in each was similar.

The behavior of the SCV is not surprising, given its relation to the
chi-square statistic. If all of the populations are the same, then Ei will
be the same for all counties and

SCV = (1/E) (X2/k - 1)* 1000 (2)

We have seen in Table 6 that the distribution of chi-square stays con-
stant as the rate increases (column 1); since E increases with the rate,
the above formula shows that the SCV must decrease as the rate
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Table 8: 95th Percentile of Systematic Component of
Variation (SCV) in Seven Experimental Situations for Eight
Surgery Rates (Based on 1,000 Iterations per Number)

1 2 3 4 5 6 7
Rate
per Same Real 50% 10% Large Same
IOOK Pop. Pop. Mak Readmit. Readmit. Only K-10

50
100
250
500
1000
2500
5000
10000

7.05
3.51
1.49
.72
.32
.12
.05
.02

100.34
41.19
17.36
8.09
4.38
1.64
.70
.34

206.49
99.61
31.44
17.80
8.45
3.15
1.58
.72

232.25
115.08
41.48
20.80
8.52
4.52
2.14
1.04

128.23
57.73
23.40
12.21
6.50
2.12
1.11
.55

27.29
13.27
6.14
2.65
1.41
.59
.25
.11

15.06
6.77
2.78
1.59
0.65
0.28
0.14
0.06

Column:
1-All 39 counties have same population, 114,000.
2 -Actual county populations used (2,618 to 1,344,586).
3 -"Males Only" (50 percent of population used).
4-50 percent of people are readmitted once.
5-10 percent of people are readmitted once.
6-Counties with populations above 10,000 (31 counties).
7-Only ten counties, all with same population, 114,000.

increases. Examination of a chi-square table shows that X2/k is larger
for smaller values of k, which explains why values in column 7 are
larger than those in column 1. The derivation of the SCV assumed that
there were no readmissions, so it should not be surprising that it is
sensitive to the readmission rate.

The SCV was developed as a measure for comparing several sur-
gery types, or the same surgery in two different regions. Its sensitivity
to many factors other than true variability among small areas suggests
that it does not fulfill this purpose, at least when the null hypothesis is
true.

AGE AND SEX ADJUSTMENT

In the simulation, we assumed that every person in a county had the
same probability p of having surgery. This is, of course, an oversimpli-
fication, as it ignores the well-known variability of most health condi-
tions by age and sex. Different age or sex distributions among the
counties might cause differences to appear, even if the rates within each
stratum were identical across counties. This is typically dealt with in
SAAs by age/sex adjusting the surgery rates before comparing them
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among counties (Armitage 1973). We did not include this type of
variation because it is difficult to address in general terms: we would
need to decide on not just the number of counties, their sizes, the rates
to be examined, and the readmissions rates, but also on how many age/
sex strata to use, what the differences in rates are for the strata, and
how the distribution of these strata might vary among the communi-
ties. We used both a theoretical approach and a small simulation to
study the results of age/sex adjustment, as shown in Appendix C. The
results suggest that the 95th percentiles obtained from the homogene-
ous population (Tables 1-8) are within a few percentage points of those
that would be needed to allow for age/sex adjustment. The tables here
are thus adequate for a first look at the data, with the caveat that SAAs
that use age/sex standardization and whose results are fairly near to the
tabled 95th percentile should be studied further using a simulation that
incorporates the age and sex distribution of the counties, and the age
and sex distribution of the surgery rate. It is not a difficult proposition
to do this for a specific set of small areas and rates.

EXAMPLES: WASHINGTON DATA

Data were available on the number of back surgeries in the state of
Washington, which averaged 89.8 per 100,000 (Volinn 1988). The
extremal quotient for the rates was 172.1/11.5 = 14.96; chi-square
was 196; the coefficient of variation was 0.24; and the SCV was 95.4.
The second column and second row of Table 5, which has a surgery
rate of 100 per 100,000, should give approximate information about
the EQ if there were no readmissions. Under the null distribution the
extremal quotient has a 95th percentile of 8.85. Since 14.96 is larger
than 8.85, it represents more variability than would be expected by
chance alone. The null hypothesis of equal surgery rates in all counties
can be rejected, based on the EQ ifthere were no readmissions. Columns 4
and 5 of Table 5 show the critical values of the EQ are 23.53 (for 50
percent readmissions) and 11.74 (for 10 percent readmissions). The
EQ is not larger than would have been expected if there were 50
percent readmissions.

Table 6 provides similar information about the chi-square statis-
tic. Critical values from columns 2, 4, and 5 are 55.5, 92.2, and 64.8,
respectively. The observed value, 196, is well above these values, indi-
cating highly significant results if any of these experimental conditions
is true. Table 7 gives three critical values for the CV (.256, .330, .287).
The observed value of .24 is not larger than any of these. For the SCV
(Table 8), the critical valies are 41.19, 115.08, and 57.75. The
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observed SCV of 95.4 is significantly higher than expected unless there
are 50 percent readmissions. The highest rate (172.1) was in one of the
smallest counties. If the eight counties with populations below 10,000
are removed, the EQbecomes 155.9/11.5 = 13.55. This is considera-
bly higher than the 95th percentile of 3.26 for a rate of 100 shown in
column 6 of Table 5 (if there were no readmissions).

Thus, for the four tests considered, there is clear significance
based on the chi-square statistic; nonsignificance based on the CV; and
equivocal significance, depending on the readmission rate, for the EQ
and SCV. This points out, first, that it is vitally important to find out
whether there are readmissions and how many there are. Second, it
shows that the four measures of variability are not measuring variabil-
ity in the same ways. It is likely that some of these measures are more
sensitive to true variation than the others (i.e., more powerful). The
chi-square seems to be more powerful in this situation, but this may be
because we have understated the variance in the simulation model.
More research is needed in the non-null situation, to determine which
technique should be used.

A second set of Washington data was available for Medicare patients
with one or more hospital admissions with diabetes as a primary or
related cause (Connell 1983). Approximately 10 percent of the popula-
tion of Washington was eligible for Medicare, the admission rate was
2,565 per 100,000, the average number of admissions per person
admitted was 1.5, and the extremal quotient was 4593/632 = 7.3.
From a simulation (not shown) based on each county having 10 per-
cent of the population in Table 2, and a 50 percent readmission rate,
the 95th percentile of the EQ for an admission rate of 2,500 is 8.4. The
observed EQ of 7.3 is thus not statistically significant. The observed
maximum is 1.96 standard deviations above the expected maximum of
3,691, and the minimum rate is 1.15 standard deviations below its
expected value. A test based on the maximum rate thus indicates that it
was significantly different from that expected under the null hypothe-
sis. This suggests that tests based on the observed maximum could
have more power in rejecting the null hypothesis than tests based on
the EQ in some situations.

Since we have looked at the test of variability in several different
ways, it may not be surprising that some of these tests turn out to be
significant but others do not. This problem of multiple comparisons
could be eased if it was known which of the possible tests provided the
most power against alternatives of interest, since only that test would
be used.
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EXAMPLES: PUBLISHED ARTICLES

We used the simulation program to evaluate the results of articles in
the literature. Although we did not do a systematic search, our eclectic
set of about 50 SAA articles yielded only five studies that provided the
necessary data (size of each county). We compliment the authors of
these articles, and suggest that future authors provide the same
information.

Pasley et al. (1987) present hospitalization and surgery rates for
the elderly in 62 counties of New York state. Since the artide gave the
population for each county, we were able to perform the same simula-
tion as for Washington state. Table 9 shows the observed EQs and the
95th percentiles of the EQ under the null hypothesis. We simulated
both the no-readmission and the 50 percent readmission cases. For
example, for cholecystectomy, the rate was 400 per 100,000; the
observed EQ was 5.00, which is lower than the 95th percentile assum-
ing no readmissions (5.23) and assuming 50 percent readmissions
(9.09). The observed coefficient of variation (.306) is larger than the
95th percentile assuming no readmissions (.197) and that assuming 50
percent readmissions (.251). Five of the eight EQs reported were statis-
tically significant. Three (for cholecystectomy, prostatectomy, and her-
niorrhaphy) were not significantly different from what would be
expected by chance. These three conditions where the EQ was not
significant involved the lowest rate procedures, and prostatectomy is
applicable to only half of the populations. The expected numbers of
cases in the smallest county were 3.3, 8.0, and 3.5 for the three proce-
dures, respectively. There was also considerable variability in the pop-
ulation sizes (837 to 281,328). All of these conditions should lead us to
be wary of accepting the EQ on its face value. Although the EQ was
not always significant, the observed CVs were significantly higher than
the 95th percentile in every case, indicating that there is significant
variability. Here, the CV seems to be more powerful than the EQ
again suggesting that there may be differences in power for the various
tests.

Wennberg and Gittelsohn (1982) presented data on hospital
admissions for 13 areas in Vermont. The smallest area had a popula-
tion of 7,960, and the observed rate was 16,335 per 100,000. The
observed extremal quotient of 1.63 was highly significant, based on
simulations assuming a 50 percent readmission rate as above (the 95th
percentile was 1.12). As the expected number of cases in the smallest
county is 1,300, and all counties are relatively large, these results might
have been expected. On the other hand, our simulation model perhaps
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did not allow enough variability in the readmission rate- there were
surely people with more than two admissions. This might still be exam-
ined in more detail.

Knickman and Foltz (1984) looked at hospitalization rates from
the National Health Interview Survey in four regions of the country,
the smallest having a sample 10,921 respondents. The observed EQ for
admission rates falls right at the 95th percentile of the EQ (assuming a
50 percent readmission rate), and so is just statistically significant. The
smallest number of admissions expected was 1,229. This article also
looked at variation in the number of hospital days per person, clearly
not a binary variable. We cannot evaluate that analysis at this time,
but it would be possible to address it with the simulation technique if
the underlying distribution of hospital days per person were known.

Lewis (1969) presented data on six surgical procedures for 13
regions. The smallest region had a population of 41,000 and the small-
est rate was 42 per 100,000. All of the regional differences shown were
statistically significant. The smallest expected number of admissions
was 17.

Chassin, Brook, Park, et al. (1986) analyzed the use of services by
Medicare patients. Thirteen areas of the United States were studied,
with the smallest having 83,000 Medicare enrollees. Sixty-seven of 123
procedures studied showed at least threefold differences between sites.
All of the 30 "selected" medical and surgical procedures presented in
the article showed statistically significant variation based on the 95th
percentile of the EQ and on the CV. The minimum expected number
of cases was about 17.

This review did now show any large problems in the published
articles. Probably the most significant finding is that so few articles
provided the necessary data for the comparison to be made.

SUMMARY AND DISCUSSION

Based on these results, the amount of chance variability in the descrip-
tive statistics used in SAA is higher than intuition might have sug-
gested. There is more variability for low-incidence surgeries and for
smaller subgroups of the population. The variability also depends
strongly on the probability of readmission, which is rarely considered
in small-area studies. The inclusion of counties with small populations
is also a major determinant of the variability. Some descriptive statis-
tics are more sensitive than others to these factors. When "real" data on
the counties of Washington and New York states were tested against
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the null distributions, some extremal ratios that seemed to be high were
not significantly different from the null situation. Results from larger
data sets seemed more stable.

Our findings suggest strongly that investigators should explore the
null hypothesis, rather than assuming that observed variability is sig-
nificant or important. If the null hypothesis cannot be rejected, either
there is not excess variability or the data at hand are not adequate to
assess the existing variation.

We are unable to recommend a single good descriptive statistic for
SAA. A descriptive statistic should have some intuitive meaning, and
should be sensitive to important variations in the data but insensitive to
unimportant variations. Of the four statistics examined, the EQ is
most intuitively satisfying, followed perhaps by the SCV and the CV.
The chi-square is not very intuitive. On the other hand, all of the other
measures vary considerably due to such factors as the number of coun-
ties, the size of the counties, the variation in county size, and the
underlying rate being evaluated. Comparisons of several surgical pro-
cedures, or of several counties for the same surgical procedure, might
be deceptive if these statistics are used. Further, the distributions of
these statistics are not known in the null situation. The chi-square
statistic, although it lacks intuition, is tabled and is independent of
most of these factors. If the statistic is divided by its degrees of freedom,
x2ldof is relatively independent of the number of counties, as well. (The
95th percentile for 5 counties is 2.2; for 10, 1.8; for 20, 1.7; for 30, 1.5;
and for 100, 1.2.) Future researchers might consider using this statistic
(among others) in SAAs of "ectomies." We have no recommendations
on descriptive statistics for the situation where readmissions are possi-
ble. More information about the true underlying distributions, and
more simulations, are necessary to address this problem.

How should an investigator proceed to test the null hypothesis?
The results above indicate that if the counties are large and about the
same size, there are no readmissions, and the expected values are fairly
large, the EQ may be used, either at face value or with tables newly
developed by Kazandjian et al. (1989). If there is variability in the
county sizes, however, the only way to evaluate the significance of the
EQ is a simulation similar to ours. The SCV and the CV present
similar problems, in that there are not tabled values, and also because
they are sensitive to the underlying surgery rate as well as to the
variability. Only the chi-square statistic is uniformly good in these
situations, as it is tabled and does not vary with the rate; we recom-
mend using it if the expected numbers of cases are five or more (and
lower if the Yates correction is used). If age/sex adjustment is required,
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two variations of the chi-square test- the Mantel-Haenszel approach
(Armitage 1973) or a logistic regression that tests for the effect of the
dummy variables for county, after controlling for age and sex-would
also be reasonable.

If the same person can be counted more than once, however, none
of these methods can be trusted, as is shown clearly in columns 4 and 5
of Tables 5 through 8. These so-called "readmissions" can occur
because of rehospitalizations for the same problem or for complica-
tions, because of billing errors in claims files, or because the variable of
interest was not binary to start with (e.g., number of hospital admis-
sions of any type, total health care costs, number of fillings). In such
situations it is crucial to determine the distribution of the number of
admissions per person. If data are available at the person level, and if they
can be considered normally distributed, an analysis of variance would
be appropriate. (For instance, if the dependent variable were log visits
or log costs, they might be approximately normal. Preliminary analy-
ses suggest that ANOVA would be well behaved even in the experi-
mental conditions used in Tables 1-8.) If not, a modification of this
simulation program could be used to generate the appropriate critical
values. Analysis of variance may be difficult, as data bases often con-
tain no records for the people who did not have surgery; either dummy
records would be required or special software would be necessary.

Another approach to determining whether there is excess variabil-
ity has been suggested. This is to regress the observed rates on some
relevant covariates (e.g., number of surgeons per capita). Under the
null hypothesis that all underlying rates are the same, there should be
no significant association between the rates and the various regressors.
This approach is particularly appealing because it does not require that
the distribution of the dependent variable be known at the individual
level; we need assume only that the rates themselves are normally
distributed and independent, which might be approximately true.
Unfortunately, this approach may be more appropriate in theory than
in practice due to the nature of small-area analysis. There are usually
relatively few data points (one per small area) and the variables tend to
be "per capita" rates. The underlying variability of rates of this type has
been demonstrated in this article, and there will be as much variability
in the regressors as in the dependent variable, suggesting that spurious
relations will abound. The small number of observations means that
outliers will tend to have a large influence on the estimated regression
coefficients and significance levels. Variability in size among the coun-
ties means that the assumption of homoscedasticity will not be met.
The usual weighted least-squares approach with weights proportional
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to size will inappropriately assume that there is no variability in rates
among counties, and will give most of the weight to the largest coun-
ties. There has been work on the "proper" weights to use in such
analyses (Breslow 1984; Pocock, Cook, and Beresford 1981; Tsuta-
kawa 1988), but these depend on knowledge of the distribution of the
dependent variable at the individual kvel. Finally, SAA regressions usu-
ally require adjusting the observed variables (e.g., number of sur-
geons) for population size. In our experience, simply dividing the
observed counts by the population size yields a variable that is still
correlated with population size, leaving the strong probability that
"significant" associations are really due to correlation of the variables
under examination with a third variable (population). In a recent study
ofback surgery, 30 regressors were examined, and many of the "signifi-
cant" results could be explained by a single outlier, usually one of the
smallest counties (Volinn, Mayer, Diehr, et al. 1988).

After significance is established, what is the next step? Two ques-
tions are usually asked. The first is, "which counties are significantly
different?" The second is, "what types of counties are significantly
different?" It is possible to calculate a 1 degree of freedom chi-square
statistic for each county [(O - E)2/E]. However, this will not follow the
chi-square distribution if readmissions are possible. Further, unless
this particular county has been specified in advance, the statistics
should be adjusted for multiple comparisons. In our situation, where
39 such comparisons would be made, a = .05/39 = .00 13 is the
adjusted level, corresponding to the critical value of 9.0 rather than the
usual value of 3.84. Such a procedure might have low power. In situa-
tions where analysis of variance is appropriate, the usual multiple
comparisons methods can be used to determine which counties are
different from the others. However, if the number of counties is large,
it may be very difficult to achieve significance. The simulation method
could be adapted to calculate the distribution of, for example, the
second-highest rate, or the biggest difference between two adjacent
rates, under a specific type of (non-null) variability (e.g., the smaller
counties have higher rates). The regression approach is the only
approach we have to determine characteristics of counties with high
rates, but it must be used with great care, for reasons just mentioned.
Clearly there is room for methodologic work in this area.

The implications of these findings are limited somewhat by the
form of the simulation, the lack of data to improve the simulation, and
the generalizability to other settings of findings about the state of
Washington. As mentioned above, age and sex variation are not
included explicitly in these simulations, but the general findings are
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true with or without age/sex adjustment. Another simplification was
the model for readmissions, which lets individuals have either one or
two admissions, but no more. This was done primarily for illustrative
purposes. In real situations, people may have many more than two
admissions, which would increase the amount of variability above that
shown. We reasoned that the example given made our point-that
readmissions are important. In future work, if the real distribution of
readmissions is known, it can be incorporated directly into the simula-
tion. We hope that future researchers will concentrate on obtaining
such data.

We have not addressed the power of these tests. It may well be
that some of the statistics or methods are better than others in detecting
true variation. We presented some examples where one type of test
rejected the null hypothesis, but another did not. This area remains to
be explored. The relative performance of the descriptive statistics may
well be different in the non-null situation.

This discussion has noted several methodological issues that
should be addressed. One factor inhibiting such research is the lack of
detailed SAA data. The publication of data at the patient level, show-
ing the number of patients with 0, 1, 2, admissions, for instance, would
permit estimation of variances that could be used in the simulations or
in other methods where the binary (no readmissions) assumptions are
incorrect. It is often difficult to obtain person-level data because there
are no individual patient identifiers on claims records. Another possi-
bility is to obtain several years of data for each small area. This would
permit a direct estimate of the variation for each county which might,
after smoothing, be used in simulation programs or other methods.

Reporting standards for SAAs should be established. At a mini-
mum, an investigator should provide the actual sizes of all of the small
areas, and indicate whether there are readmissions in the data base. If
there are no readmissions, then the chi-square statistic or its variants
can be used to establish excess variation. An alternative is to use other
statistics, but their null distributions must either be tabled (Kazand-
jian, Durance, and Schork 1989) or obtained from simulation. If there
are readmissions, then the investigators must present information
about the distribution of the readmissions at the person level. Based on
that information, it may be possible to determine a statistical technique
that is appropriate. Or, the simulation method can be used to find the
95th percentile of the desired test statistic under the null hypothesis,
after the variation has been built into the model.

The existence of large variation under the null hypothesis for
counties in Washington state does not necessarily mean that published
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studies of small-area variation are inaccurate. In general, published
studies, including those cited here, have been based on "ectomies" and
on very large "small areas," for which the rates are fairly stable. How-
ever, we know of investigators who plan to perform analyses similar to
the Washington simulations. And the article that analyzed counties
(Pasley et al. 1987) did have some results that are not statistically
significant. These findings are probably most meaningful for investiga-
tors who plan to perform SAAs in new situations.

Researchers should be wary of findings based on small popula-
tions; lower-incidence surgeries; procedures that may involve readmis-
sions; "nonstandard" procedures that are not binary, such as hospital
admissions or patient days; and on new types of "small areas," such as
hospitals or dental practices, whose variability has not been studied.
New SAA research should make an effort to study the null hypothesis
and to present data useful for its evaluation, such as the sizes of popula-
tions and the distribution of readmissions. These new types of small-
area analysis may well be misleading if attention is not paid to the null
distribution.

Further methodologic work is needed with respect to the null
hypothesis. Research to identify the study designs and descriptive sta-
tistics that are most powerful in detecting small-area variation is also
important. We believe that the simulation approach can be useful in
providing ways to test for significant variation among small areas, in
the null and the non-null situation. For "ectomies," only the county
sizes have to be provided to the program. For non-ectomies, the
researcher must also determine the distribution of readmissions (or
whatever the variable is) at the patient level, so that the program can be
set to simulate this. We hope to work with other SAA investigators in
exploring these areas.

APPENDIX A

SIMULATION MODEL

The simulation program is written in FORTRAN and runs on an IBM
AT. The description of the program in the text made some oversimpli-
fications. We do not actually assume that all of the surgery rates have a
normal distribution. This assumption would be defensible for large
values ofp (the probability that an individual has surgery) and ni, based
on the normal approximation to the binomial. However, if the
expected number of cases in a county is less than five, the approxima-
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tion is not good and can even yield negative values of the surgery rate.
For this reason we use the exact binomial calculation for counties
whose expected number of surgeries is less than five. (The Poisson
model would also be appropriate if the counties are sufficiently large.)

The method for allowing readmissions is as follows. Let the pro-
portion of the population with no admissions be 1 -p, the proportion
with exactly one admissions be p - a, and the proportion with exactly
two admissions be a. The expected number of admissions per person is
1*(p-a) + 2a = p + a. Thevarianceisv = p + 3a-(p + a)2. (Ifa = 0
there are no readmissions, and the mean reduces to p and the variance
to p(l - p) as in Figure 1. The value ofp used is adjusted so that p + a in
the readmission case is the same as p in the no-readmission case.) The
variance of the proportion with an admission is v/ni. For the larger
counties, we simulated the rate as shown in Figure 1, but using mean
p + a and variance v/ni. For the smaller counties, in which the exact
binomial distribution was used, we used a two-step process. After
determining the number of people with at least one admission, we
"flipped a coin" for each person to decide whether that person had a
second admission.

Tables 1-4 are based on 3,000 iterations per line. We found that
this produced very stable estimates of most of the parameters. How-
ever, the mean and standard deviation of the EQ were still unstable
with 3,000 iterations. For other parameters, a number of iterations as
low as 500 produced fairly good estimates. It is likely that the mean and
standard deviation of the EQ are not worth comiputing, because of the
long right tail of the distribution, and that the simulation should
instead be used to estimate percentiles of the distribution of the EQ (or
other statistics such as the CV).

APPENDIX B
POPULATION SIZES FOR WASHINGTON STATE COUNTIES
(Total - 4,447,315)
1. 2,618 9. 13,817 17. 33,530
2. 3,636 10. 16,505 18. 36,156
3. 4,022 11. 17,528 19. 36,730
4. 6,129 12. 18,003 20. 41,637
5. 7,501 13. 18,053 21. 48,548
6. 9,035 14. 24,326 22. 49,003
7. 9,076 15. 25,042 23. 50,661
8. 9,583 16. 32,135 24. 52,821

Continued
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APPENDIX B: Continued

25. 53,639 30. 111,382 35. 210,349
26. 57,733 31. 114,016 36. 359,467
27. 63,899 32. 145,058 37. 384,458
28. 70,851 33. 175,986 38. 527,559
29. 79,202 34. 183,035 39. 1,344,586

APPENDIX C

THEORETICAL AND SIMULATION APPROACH
TO AGE/SEX STANDARD RATES

Age and Sex Adjustment

In the simulation, we assumed that every person in a county had the
same probability p of having surgery. This is, of course, an oversimpli-
fication, as it ignores the well-known variability of most health condi-
tions by age and sex. Different age or sex distributions among the
counties might cause differences to appear, even if the rates within each
stratum were identical across counties. This is typically dealt with in
SAAs by age/sex-adjusting the surgery rates before comparing them
among counties (Armitage 1973).

We did not indude this type of variation for several reasons. First,
it would be difficult to address in general terms, since we would need to
decide not just on the number of counties, their sizes, the rates to be
examined, and the readmission rates, but also on how many age/sex
strata to use, what the differences in rates were for the strata, and how
the distribution of these strata might vary among the communities.

In this appendix, we evaluate the effect of age/sex standardization
on the variance of the estimated rates, and hence its effect on the
variability of statistics such as EQ, using both a theoretical approach
and a small simulation. In our other work, we assumed a uniform
value ofp for all people in each county. It is more common to have data
in which the p's vary by strata, and the strata vary by county. What is
the effect of using age/sex-standardized data with overall rate p, rather
than homogeneous data with rate p?

Define the following:
ni = population of county i, i = 1,2,.. .k.
ny = number of people in age/sex stratum j (j = 1,2,... n) in county i.
fy = n4lni (fraction of people in county i who are in stratum j).
-rj = fraction of the standard population who are in stratum j.
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pij= estimated surgery rate in county i, stratum j (i.e., number of
surgeries divided by n%,).

pj= true surgery rate in stratum j (under the null hypothesis,
assumed to be the same in all counties).
Under the null hypothesis that surgery rates do not differ across

counties, the true age/sex-adjusted surgery rate for all counties is

n

j*= 1. tiP

Under the case of no readmissions, the number of surgeries in
stratum j in county i has a binomial distribution, and hence the vari-
ance of p9 is

Var(,) = p1(1 - pj)ln
The age/sex-standardized estimate of surgery rate for countyj is

n

and the variance of this estimate is

n

Var(j*) = 7w? Var( A#) (C.1)JP) = 1

n
E 7r pj (I- pj)ln

j=1

ni TjPir Pi PO 5) .j
in ni

J i fi f*
This variance can be compared to the variance of the unstandar-

dized rate estimate if the population of county i were homogeneous,
with all persons having probability of surgery equal to p*:

n n

nip*(' - p*) = - 7rjpj - I ( 2: 7r2(C2
If the surgery rate is low, the second term in both (C. 1) and (C .2)

will be small and can be ignored. If the distribution of people across
age/sex strata in county i is similar to the age/sex distribution of the
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standard population, the factor 7r//j will be close to one for allj and the
variance in (C.1) will be similar to that in (C.2). In this situation the
variance (C.2) will give a good approximation to the true variance
(C.1). The simulations presented in this article can be thought of as
being based on this approximation. Suppose, however, that the age/sex
distribution does differ substantially across counties. In this situation,
the factor ir//j will be greater than one in those strata that are underrep-
resented in county i relative to the standard population, and less than
one in overrepresented strata. If all of the strata with a high surgery
rate (p,) are underrepresented while those with a low surgery rate are
overrepresented, then the actual variance for that county (C. 1) will be
bigger than the approximate variance (C.2). If this is true for many of
the smaller counties, the distribution of the EQ will have greater varia-
bility than shown in the simulations. On the other hand, if all of the
small counties have reduced variance, due to overrepresentation of all
of the strata with high surgery rates, then the variability of the EQ will
be smaller than shown in the simulations. We therefore conclude that
in the null case, age/sex standardization can either increase or decrease
the variability of the EQ (as well as the other statistics), depending on
the age/sex distribution in all the counties, relative to how the surgery
rate varies across strata.

We tried two examples, dividing people in the state ofWashington
into two strata, for over and under age 65. The percent of people over
65 varies from 8 percent to 20 percent among counties. We considered
two extreme-seeming cases: (a) the young have a rate ten times as high
as the old and (b) the old have a rate ten times as high as the young. We
calculated the required variance multiplier factors- that is, (C.1)/
(C.2)- and used these in the simulation program. The multipliers
were generally near 1, but some were below and some were above 1.
For condition (a) the 95th percentiles of the EQ chi-square, and CV
were all 0 to 3 percentage points higher than those obtained assuming a
homogeneous population, varying depending on the underlying rate.
For the SCV, percentiles were 0 to 10 percentage points higher. Thus,
the tabled percentiles would be substantially correct, except for the
SCV. In condition (b) the EQ 95th percentile varied from 81 to 101
percent of the homogeneous value; the chi-square from 93 percent to
96 percent; the CV from 92 percent to 98 percent; and the SCV from
66 percent to 97 percent. Again, the simulated numbers assuming a
homogeneous population are substantially correct, except for the SCV.
Another example with six age groups gave similar results.

These results suggest that using 95th percentiles obtained from the
homogeneous population is adequate for a first look at the data, but
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that SAA results that are fairly near to the 95th percentile should be
looked at more carefully using a simulation that incorporates the age
and sex distribution of the counties, and the age and sex distribution of
the surgery rate. It is not a difficult proposition to do this for a specific
problem.
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